產品搜索 Search
產品目錄 Product catalog
繼電器在國內的突破于創新
點擊次數:2213 更新時間:2012-09-06
繼電器在國內的突破于創新
機電試繼電器被*是可靠、具魯棒性的低成本器件。繼電器的制造量與日俱增,并被成功運用于實現信號和能量分配的無數應用中。即使是在zui惡劣的環境條件下,它卻仍然具有良好的魯棒性和可靠性。各種繼電器類型覆蓋了廣泛的開關負載范圍,從μV和μ*到數百安和高達500V的電壓。而且,繼電器在通電狀態下具有非常低的電阻(mΩ),在斷電狀態下則具有非常高的絕緣電阻(GΩ),二者都適用于負載電路和控制電路,以及開路的開關路徑中。
繼電器在容許電壓、電流或溫度方面具有很大的過載能力。盡管繼電器已具有非常好的物理特性,但卻還有一些額外要求。PCB占板空間必須盡可能小,而且繼電器應該具有防潑濺(防洗滌或抗風雨),或者甚至*密封的性能。新設計不僅可以滿足所有這些要求,而且還能提高可靠性。未來繼電器的創新將進一步實現更小的設計,而且不會改變開關特性。
材料成本
繼電器構造中需要用到許多原材料,例如:用于制造線圈或電流承載部件的銅,用于制造開關觸點的貴金屬(例如:金、銀和鈀),用于制造磁路的鐵,以及用于創建絕緣系統的塑料。這些原材料的成本近年來顯著上升,有些材料的成本已增加了好幾倍。銀成本的增加尤其嚴重,因為目前還沒有實用的材料能夠替代開關設備中的銀。
小型化
機電式繼電器取得巨大成功的一個主要原因是,繼電器業能夠通過新的小型化設計創新,滿足電子業、電信和汽車電子設備的需求(圖1)。通用及功率繼電器的情形較為麻煩,其標準化的引腳布局和必要的空氣與漏電流路徑,使得這些繼電器的小型化設計愈加困難,甚至在一定程度上阻礙了小型化的發展。繼電器小型化設計中面臨的主要挑戰是,在減小物理尺寸的同時,提高開關能力。
在繼電器小型化設計中,必須考慮許多不斷改變的因素:在接觸力和斷開力減小的情況下,保持觸點的可靠性;保護繼電器免遭內部和外部污染;材料改變和觸點腐蝕引起的閉合力減小;盡管物理尺寸減小,但絕緣性能仍要提高;熱性能、自加熱以及在環境溫度升高時的性能;更長的服務壽命和更高的開關能力;更高的可靠性要求;制造技術帶來的限制。
新技術和新概念也將促成未來繼電器技術的巨大創新。
盡管尺寸顯著縮小,但線圈功耗和開關能力卻幾乎保持不變,介電特性有所改進,開關時間也明顯縮短,但熱阻卻有所增加。
以下是允許在縮小繼電器體積的同時,又能改進特性的一些因素。
設計:微型繼電器全部使用極化磁路。這一特性允許縮小物理尺寸,同時還支持雙穩態開關特性。線圈涂層允許顯著減小繼電器的間隙和漏電流路徑。氣密外殼的使用是另一項優勢,它能夠*地保護繼電器內部免受外部污染的影響,進而減小所需要的zui小接觸力。
材料:在小型化設計過程中,體積與表面積的比例將會變差,這將導致熱阻增加。這種情況下,如果仍要保持良好的觸點可靠性,就需要提高所用絕緣材料的特性。為了能夠提供相同甚至更高的可靠性,則必須顯著改進絕緣材料的熱穩定性和排氣特性。
使用的銅材料也相當重要。越高的傳導率越允許減小必要的橫截面,并越支持更小的物理形狀。對使用的彈簧材料而言,高溫時的松弛性非常重要。
工藝:小型化設計對繼電器中所用各部件的精度和組裝工藝的精度,提出了更加高的要求。只有兩者都得到了控制,才能有效實現更小的物理尺寸。制造過程中更小的公差,還會使開關特性具有更少的分散。更小的物理尺寸要求全自動生產,以便在組裝和測試過程中系統性排除人為因素。
介電強度
較大尺寸設計可以增加介電強度。這句話聽起來非常合理,但不是在每種情況下都一定正確。如圖2所示,與第3代繼電器相比,第4代產品的介電強度有了明顯增加。在線圈與觸點之間以及在斷開的開關路徑之中的這種改進,可以通過以下措施首先實現:涂覆線圈;將驅動和開關腔分開;使用氣密外殼和合適的惰性氣體。
繼電器在容許電壓、電流或溫度方面具有很大的過載能力。盡管繼電器已具有非常好的物理特性,但卻還有一些額外要求。PCB占板空間必須盡可能小,而且繼電器應該具有防潑濺(防洗滌或抗風雨),或者甚至*密封的性能。新設計不僅可以滿足所有這些要求,而且還能提高可靠性。未來繼電器的創新將進一步實現更小的設計,而且不會改變開關特性。
材料成本
繼電器構造中需要用到許多原材料,例如:用于制造線圈或電流承載部件的銅,用于制造開關觸點的貴金屬(例如:金、銀和鈀),用于制造磁路的鐵,以及用于創建絕緣系統的塑料。這些原材料的成本近年來顯著上升,有些材料的成本已增加了好幾倍。銀成本的增加尤其嚴重,因為目前還沒有實用的材料能夠替代開關設備中的銀。
小型化
機電式繼電器取得巨大成功的一個主要原因是,繼電器業能夠通過新的小型化設計創新,滿足電子業、電信和汽車電子設備的需求(圖1)。通用及功率繼電器的情形較為麻煩,其標準化的引腳布局和必要的空氣與漏電流路徑,使得這些繼電器的小型化設計愈加困難,甚至在一定程度上阻礙了小型化的發展。繼電器小型化設計中面臨的主要挑戰是,在減小物理尺寸的同時,提高開關能力。
在繼電器小型化設計中,必須考慮許多不斷改變的因素:在接觸力和斷開力減小的情況下,保持觸點的可靠性;保護繼電器免遭內部和外部污染;材料改變和觸點腐蝕引起的閉合力減小;盡管物理尺寸減小,但絕緣性能仍要提高;熱性能、自加熱以及在環境溫度升高時的性能;更長的服務壽命和更高的開關能力;更高的可靠性要求;制造技術帶來的限制。
新技術和新概念也將促成未來繼電器技術的巨大創新。
盡管尺寸顯著縮小,但線圈功耗和開關能力卻幾乎保持不變,介電特性有所改進,開關時間也明顯縮短,但熱阻卻有所增加。
以下是允許在縮小繼電器體積的同時,又能改進特性的一些因素。
設計:微型繼電器全部使用極化磁路。這一特性允許縮小物理尺寸,同時還支持雙穩態開關特性。線圈涂層允許顯著減小繼電器的間隙和漏電流路徑。氣密外殼的使用是另一項優勢,它能夠*地保護繼電器內部免受外部污染的影響,進而減小所需要的zui小接觸力。
材料:在小型化設計過程中,體積與表面積的比例將會變差,這將導致熱阻增加。這種情況下,如果仍要保持良好的觸點可靠性,就需要提高所用絕緣材料的特性。為了能夠提供相同甚至更高的可靠性,則必須顯著改進絕緣材料的熱穩定性和排氣特性。
使用的銅材料也相當重要。越高的傳導率越允許減小必要的橫截面,并越支持更小的物理形狀。對使用的彈簧材料而言,高溫時的松弛性非常重要。
工藝:小型化設計對繼電器中所用各部件的精度和組裝工藝的精度,提出了更加高的要求。只有兩者都得到了控制,才能有效實現更小的物理尺寸。制造過程中更小的公差,還會使開關特性具有更少的分散。更小的物理尺寸要求全自動生產,以便在組裝和測試過程中系統性排除人為因素。
介電強度
較大尺寸設計可以增加介電強度。這句話聽起來非常合理,但不是在每種情況下都一定正確。如圖2所示,與第3代繼電器相比,第4代產品的介電強度有了明顯增加。在線圈與觸點之間以及在斷開的開關路徑之中的這種改進,可以通過以下措施首先實現:涂覆線圈;將驅動和開關腔分開;使用氣密外殼和合適的惰性氣體。